Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
1.
Front Cell Infect Microbiol ; 14: 1381877, 2024.
Article in English | MEDLINE | ID: mdl-38572316

ABSTRACT

Most of vaccinees and COVID-19 convalescents can build effective anti-SARS-CoV-2 humoral immunity, which helps preventing infection and alleviating symptoms. However, breakthrough viral infections caused by emerging SARS-CoV-2 variants, especially Omicron subvariants, still pose a serious threat to global health. By monitoring the viral infections and the sera neutralization ability of a long-tracked cohort, we found out that the immune evasion of emerging Omicron subvariants and the decreasing neutralization led to the mini-wave of SARS-CoV-2 breakthrough infections. Meanwhile, no significant difference had been found in the infectivity of tested SARS-CoV-2 variants, even though the affinity between human angiotensin-converting enzyme 2 (hACE2) and receptor-binding domain (RBDs) of tested variants showed an increasing trend. Notably, the immune imprinting of inactivated COVID-19 vaccine can be relieved by infections of BA.5.2 and XBB.1.5 variants sequentially. Our data reveal the rising reinfection risk of immune evasion variants like Omicron JN.1 in China, suggesting the importance of booster with updated vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2/genetics , Breakthrough Infections , Cohort Studies , Immune Evasion , Antibodies, Neutralizing , Antibodies, Viral
2.
Virol Sin ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38548102

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still epidemic around the world. The manipulation of SARS-CoV-2 is restricted to biosafety level 3 laboratories (BSL-3). In this study, we developed a SARS-CoV-2 ΔN-GFP-HiBiT replicon delivery particles (RDPs) encoding a dual reporter gene, GFP-HiBiT, capable of producing both GFP signal and luciferase activities. Through optimal selection of the reporter gene, GFP-HiBiT demonstrated superior stability and convenience for antiviral evaluation. Additionally, we established a RDP infection mouse model by delivering the N gene into K18-hACE2 KI mouse through lentivirus. This mouse model supports RDP replication and can be utilized for in vivo antiviral evaluations. In summary, the RDP system serves as a valuable tool for efficient antiviral screening and studying the gene function of SARS-CoV-2. Importantly, this system can be manipulated in BSL-2 laboratories, decreasing the threshold of experimental requirements.

3.
Cureus ; 16(2): e54169, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38496190

ABSTRACT

Retinal necrosis is a severe condition that threatens visual function. It is caused by viruses that are known to cause acute retinal necrosis (ARN) and progressive outer retinal necrosis (PORN), which are called necrotizing herpetic retinopathies (NHR). ARN causes severe intraocular inflammation, including anterior chamber intravitreal cells, keratic precipitate, vitreous opacity, and retinal vasculitis, whereas intraocular inflammation in PORN is considered mild or virtually absent. In addition, PORN is a disease that manifests in immunosuppressive patients, such as those with acquired immunodeficiency syndrome. Here, we present a case of unilateral retinal necrosis after chemotherapy, allogeneic peripheral blood stem cell transplantation, and cord blood transplantation for acute myelogenous leukemia (AML) in a 31-year-old male patient. AML treatment resulted in metabolic remission, and oral steroids and tacrolimus were continued. After two days, the patient visited an ophthalmologist because he noticed a sudden onset of floaters and visual field disturbance in the left eye. The peripheral retina was already necrotic in all layers, causing total retinal detachment. Intraocular inflammation, retinal opacity, or hemorrhagic spots in the fundus were not observed. His previous CD4 count was 43 cells/µL. A polymerase chain reaction test of the anterior chamber fluid revealed varicella-zoster virus (VZV), and vitrectomy was performed four days after disease onset. The excised vitreous demonstrated minimal opacity. The peripheral necrotic retina was excised, photocoagulation was performed on the residual retinal limbus, and silicone oil was injected to maintain retinal attachment. The retinal restoration was maintained under silicone oil tamponade, and corrected visual acuity improved to 20/32 without strong inflammation after vitrectomy. However, two months postoperatively, he contracted coronavirus disease 2019 (COVID-19), his general condition rapidly deteriorated, and he died. This case of retinal necrosis without inflammatory results in an immunocompromised patient and VZV detection in an intraocular sample led us to suspect PORN. However, the patchy or spread retinal whitening characteristic of PORN was completely absent, whereas the well-defined, peripheral, full-layer retinal necrosis characteristic of ARN was present. Thus, this is a rare case of VZV-induced NHR with partial features of PORN and ARN that progressed very silently.

4.
Clin Transl Immunology ; 13(3): e1499, 2024.
Article in English | MEDLINE | ID: mdl-38501063

ABSTRACT

Objectives: CD4+ T cell helper and regulatory function in human cancers has been well characterised. However, the definition of tumor-infiltrating CD4+ T cell exhaustion and how it contributes to the immune response and disease progression in human gastric cancer (GC) remain largely unknown. Methods: A total of 128 GC patients were enrolled in the study. The expression of CD39 and PD-1 on CD4+ T cells in the different samples was analysed by flow cytometry. GC-infiltrating CD4+ T cell subpopulations based on CD39 expression were phenotypically and functionally assessed. The role of CD39 in the immune response of GC-infiltrating T cells was investigated by inhibiting CD39 enzymatic activity. Results: In comparison with CD4+ T cells from the non-tumor tissues, significantly more GC-infiltrating CD4+ T cells expressed CD39. Most GC-infiltrating CD39+CD4+ T cells exhibited CD45RA-CCR7- effector-memory phenotype expressing more exhaustion-associated inhibitory molecules and transcription factors and produced less TNF-α, IFN-γ and cytolytic molecules than their CD39-CD4+ counterparts. Moreover, ex vivo inhibition of CD39 enzymatic activity enhanced their functional potential reflected by TNF-α and IFN-γ production. Finally, increased percentages of GC-infiltrating CD39+CD4+ T cells were positively associated with disease progression and patients' poorer overall survival. Conclusion: Our study demonstrates that CD39 expression defines GC-infiltrating CD4+ T cell exhaustion and their immunosuppressive function. Targeting CD39 may be a promising therapeutic strategy for treating GC patients.

5.
J Org Chem ; 89(7): 4406-4422, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38512313

ABSTRACT

The palladium-catalyzed sequential cross-coupling/annulation of ortho-vinyl bromobenzenes with aryl bromides generating phenanthrenes was characterized by density functional theory (DFT). The Pd(II)-Pd(IV) pathway (Path V) is shown to be less probable than the bimetallic pathway (Path I), the latter proceeding via the following six steps: oxidative addition, vinyl-C(sp2)-H activation, Pd(II)-Pd(II) transmetalation, C-C coupling, aryl-C(sp2)-H activation, and reductive elimination. The aryl-C(sp2)-H activation process acts as the rate-determining step (RDS) of the entire chemical transformation, with an activation free energy barrier of ca. 27.4-28.8 kcal·mol-1, in good agreement with the corresponding experimental data (phenanthrenes' yields of ca. 65-90% at 130 °C after 5 h of reaction). The K2CO3 additive effectively reduces the activation free energy barrier of the RDS through direct participation in the reaction while preferentially modulating the charge distributions and increasing the stability of corresponding intermediates and complexes along the reaction path. Furthermore, bonding and electronic structure analyses of the key structures indicate that the chemo- and regioselectivities of the reaction are strongly influenced by both electronic effects and steric hindrance.

6.
Pharmacol Res ; 202: 107122, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428703

ABSTRACT

The ectonucleotidase CD39 has been regarded as a promising immune checkpoint in solid tumors. However, the expression of CD39 by tumor-infiltrating CD8+ T cells as well as their potential roles and clinical implications in human gastric cancer (GC) remain largely unknown. Here, we found that GC-infiltrating CD8+ T cells contained a fraction of CD39hi cells that constituted about 6.6% of total CD8+ T cells in tumors. These CD39hi cells enriched for GC-infiltrating CD8+ T cells with features of exhaustion in transcriptional, phenotypic, metabolic and functional profiles. Additionally, GC-infiltrating CD39hiCD8+ T cells were also identified for tumor-reactive T cells, as these cells expanded in vitro were able to recognize autologous tumor organoids and induced more tumor cell apoptosis than those of expanded their CD39int and CD39-CD8+ counterparts. Furthermore, CD39 enzymatic activity controlled GC-infiltrating CD39hiCD8+ T cell effector function, and blockade of CD39 efficiently enhanced their production of cytokines IFN-γ and TNF-α. Finally, high percentages of GC-infiltrating CD39hiCD8+ T cells correlated with tumor progression and independently predicted patients' poor overall survival. These findings provide novel insights into the association of CD39 expression level on CD8+ T cells with their features and potential clinical implications in GC, and empowering those exhausted tumor-reactive CD39hiCD8+ T cells through CD39 inhibition to circumvent the suppressor program may be an attractive therapeutic strategy against GC.


Subject(s)
CD8-Positive T-Lymphocytes , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Cytokines/metabolism , Tumor Necrosis Factor-alpha/metabolism
7.
Front Med (Lausanne) ; 11: 1303672, 2024.
Article in English | MEDLINE | ID: mdl-38439902

ABSTRACT

Background: This study aimed to understand the knowledge, attitude, and practice (KAP) of drug use among residents in western China and its influencing factors for accurately designing the knowledge, contents, and methods of popular science activities for safe drug use among residents to provide a reference for conducting rational drug use educational activities and improving residents' level of safe drug use. Methods: A cross-sectional questionnaire survey was conducted to investigate the KAP of medication among western China residents and its influencing factors from March to April 2023. Each question option was assigned a score according to logic, and the risk factors for resident medication safety KAP were explored through univariate and logistic regression analyses. Results: A total of 7,557 valid questionnaires were collected, with an effective recovery rate of 96.7%. The average scores of KAP were 72.77 ± 22.91, 32.89 ± 10.64, and 71.27 ± 19.09, respectively. In the evaluation criteria of the questionnaire, the score of medication knowledge reached "good," and the score of attitude and practice was "average." Multiple linear regression analysis indicated that male sex and low education level were significant factors affecting the lack of drug knowledge among residents. Old age and low education level were the factors of poor attitude toward medication. The low condition of medical security was a factor in residents' irregular drug use behavior. Conclusion: The overall level of rational drug use among residents in western China is good, but there are still some inconsistencies. Rational drug use education should be conducted according to the risk points of residents in drug safety KAP to further improve the level of rational drug use of residents.

8.
J Ethnopharmacol ; 324: 117772, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38266947

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bushen Zhuangjin Decoction (BZD) are an herbal compound commonly used to treat osteoarthritis (OA) in China. AIM OF THE STUDY: This study aimed to verify the mechanism of Bushen Zhuangjin Decoction in relieving the pain of knee osteoarthritis. MATERIALS AND METHODS: Network pharmacology evaluation was used to discover the potential targets of BZD to relieve pain in KOA. The therapeutic effects of BZD treatment on KOA pain using histomorphology, behavioral assessments, suspension chip analysis, and ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) assays. The functional magnetic resonance imaging was used to explore the effects of BZD treatment on brain function associated to KOA. RESULTS: Network pharmacological analysis revealed the association between the analgesic effect of BZD on KOA and the pain signaling neurotransmitter 5-HT. Subsequently, we conducted experiments to verify the therapeutic effect of BZD on pain in KOA animal models. Behavioral tests demonstrated that the pain threshold of knee osteoarthritis rats decreased in PWT and PWL, but BZD was able to increase the pain threshold. Histopathological staining indicated thinning of the cartilage layer and sparse trabeculae in the subchondral bone. Suspension chip analysis revealed a significant increase in pro-inflammatory factors of IL-1α, IL-5, IL-12, IL-17A, RANTES, TNF-α and M-CSF in KOA, along with a significant decrease in anti-inflammatory factor of IL-13. However, BZD treatment decreased the expression of pro-inflammatory factors and increased the content of anti-inflammatory factor. UHPLC-MS/MS analysis showed a significant decrease in the serum levels of GABA, E, GSH, Kyn, Met, and VMA in KOA, which were significantly increased by BZD. Conversely, the serum levels of TrpA, TyrA, Spd, and BALa were significantly increased in KOA and significantly decreased by BZD. ELISA and Western blot analysis showed increased expression of subchondral bone pain-related neuropeptides SP, CGRP, TH, NPY, VEGFA, 5-HT3 in KOA, which were decreased in BZD. Functional magnetic resonance imaging demonstrated that BZD exerts its therapeutic effect on KOA by modulating the activity and functional connections of the cortex, hypothalamus, and hippocampus. CONCLUSIONS: This study confirmed the significant role of pain-related neuromodulation mechanisms in the analgesic therapy of BZD and provides a theoretical foundation for using BZD as a traditional Chinese medical treatment for KOA pain.


Subject(s)
Drugs, Chinese Herbal , Osteoarthritis, Knee , Rats , Animals , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/metabolism , Tandem Mass Spectrometry , Pain/drug therapy , Analgesics/therapeutic use , Anti-Inflammatory Agents/therapeutic use
9.
Mol Neurobiol ; 61(3): 1655-1672, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37751044

ABSTRACT

In this study, we used Chaihu Shugan San (CSS), a traditional Chinese herbal formula, as a probe to investigate the involvement of brain functional network connectivity and hippocampus energy metabolism in perimenopausal depression. A network pharmacology approach was performed to discover the underlying mechanisms of CSS in improving perimenopausal depression, which were verified in perimenopausal depression rat models. Network pharmacology analysis indicated that complex mechanisms of energy metabolism, neurotransmitter metabolism, inflammation, and hormone metabolic processes were closely associated with the anti-depressive effects of CSS. Thus, the serum concentrations of estradiol (E2), glutamate (Glu), and 5-hydroxytryptamine (5-HT) were detected by ELISA. The brain functional network connectivity between the hippocampus and adjacent brain regions was evaluated using resting-state functional magnetic resonance imaging (fMRI). A targeted metabolomic analysis of the hippocampal tricarboxylic acid cycle was also performed to measure the changes in hippocampal energy metabolism using liquid chromatography-tandem mass spectrometry (LC-MS/MS). CSS treatment significantly improved the behavioral performance, decreased the serum Glu levels, and increased the serum 5-HT levels of PMS + CUMS rats. The brain functional connectivity between the hippocampus and other brain regions was significantly changed by PMS + CUMS processes but improved by CSS treatment. Moreover, among the metabolites in the hippocampal tricarboxylic acid cycle, the concentrations of citrate and the upregulation of isocitrate and downregulation of guanosine triphosphate (GTP) in PMS + CUMS rats could be significantly improved by CSS treatment. A brain functional network connectivity mechanism may be involved in perimenopausal depression, wherein the hippocampal tricarboxylic acid cycle plays a vital role.


Subject(s)
Depression , Perimenopause , Rats , Animals , Depression/drug therapy , Depression/metabolism , Chromatography, Liquid , Serotonin/metabolism , Tandem Mass Spectrometry , Brain , Hippocampus/metabolism , Disease Models, Animal
10.
Acta Chim Slov ; 70(4): 509-515, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38124645

ABSTRACT

A dinuclear oxidovanadium(V) complex [V2O2L2(OMe)2] (1) was synthesized from N'-(2-hydroxy-5-methylbenzylidene)-4-methylbenzohydrazide (H2L) and VO(acac)2 in MeOH. Reaction of complex 1 with 3-hydroxy-2-methyl-4-pyrone (HL') afforded a mononuclear oxidovanadium(V) complex [VOLL'] (2). The hydrazone and both complexes were characterized by IR, UV and 1H NMR spectroscopy, as well as X-ray single crystal determination. X-ray powder diffraction of the complexes was performed. The V atoms in the two complexes are in octahedral coordination. The molecules of complex 2 are linked through non-classical hydrogen bonds of type C-H∙∙∙O to form one-dimensional chains running along the a axis. The biological assay indicates that the complexes have good antimicrobial activities on the bacteria strains P. aeroginosa, S. aureus, B. subtilis and E. coli.


Subject(s)
Coordination Complexes , Escherichia coli , Anti-Bacterial Agents , Molecular Structure , Staphylococcus aureus , X-Rays , Vanadium/chemistry
11.
Hum Vaccin Immunother ; 19(2): 2256510, 2023 08.
Article in English | MEDLINE | ID: mdl-37794647

ABSTRACT

Evidence of the immunogenicity and safety of quadrivalent inactivated influenza vaccine in children aged 6 to 35 months has been emerging. To evaluate the immunogenicity and safety of quadrivalent inactivated influenza vaccine in children aged 6 to 35 months in a systematic review and meta-analysis. This meta-analysis included 12 studies with 6722 participants receiving QIV, 3575 participants receiving TIV, 4249 participants receiving full-dose QIV (F-QIV), and 3722 participants receiving half-dose QIV (H-QIV). Among children aged 6 to 35 months, QIV produces a better Immunogenicity against influenza B vaccine strains not contained in TIV. However, injection site reaction was more common for QIV, F-QIV showed superior efficacy for the B lineage, but fever and injection site pain was more frequently reported for F-QIV than H-QIV. These data support the immunogenicity and safety of quadrivalent inactivated influenza vaccine among children aged 6 to 35 months.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Child , Influenza, Human/prevention & control , Influenza B virus , Antibodies, Viral , Vaccines, Inactivated , Hemagglutination Inhibition Tests , Injection Site Reaction , Vaccines, Combined , Immunogenicity, Vaccine
12.
Analyst ; 148(22): 5650-5657, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37800908

ABSTRACT

Microbes are usually present as a specific microbiota, and their classification remains a challenge. MALDI-TOF MS is particularly successful in library-based microbial identification at the species level as it analyzes the molecular weight of peptides and ribosomal proteins. FT-IR allows more accurate classification of bacteria at the subspecies level due to the high sensitivity, specificity and repeatability of FT-IR signals from bacteria, which is not achievable with MALDI-TOF MS. Previous studies have shown that more accurate identification results can be obtained by the fusion of FT-IR and MALDI-TOF MS spectral data. Here, we constructed 20 groups of model microbiota samples and used FT-IR, MALDI-TOF MS, and their fusion data to classify them. Hierarchical clustering analysis (HCA) showed that the classification accuracy of FT-IR, MALDI-TOF MS, and the fusion data was 85%, 90%, and 100%, respectively. These results indicate that both FT-IR and MALDI-TOF MS can effectively classify specific microbiota, and the fusion of their spectral data could improve the classification accuracy. The FT-IR and MALDI-TOF MS data fusion strategy may be a promising technology for specific microbiota classification.


Subject(s)
Bacteria , Microbiota , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Spectroscopy, Fourier Transform Infrared
13.
Phytomedicine ; 120: 155031, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37666060

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a common type of cancer that shows great morbidity and mortality rates. However, there are limited available drugs to treat HCC. AIM: The present work focused on discovering the potential anti-HCC compounds from traditional Chinese medicine (TCM) by employing high-throughput sequencing-based high-throughput screening (HTS2) together with the liver cancer pathway-associated gene signature. METHODS: HTS2 assay was adopted for identifying herbs. Protein-protein interaction (PPI) network analysis and computer-aided drug design (CADD) were used to identify key targets and screen the candidate natural products of herbs. Molecular docking, network pharmacology analysis, western blotting, immunofluorescent staining, subcellular fractionation experiment, dual-luciferase reporter gene assay, surface plasmon resonance (SPR) as well as nuclear magnetic resonance (NMR) were performed to validate the ability of compound binding with key target and inhibiting its function. Moreover, cell viability, colony-forming, cell cycle assay and animal experiments were performed to examine the inhibitory effect of compound on HCC. RESULTS: We examined the perturbation of 578 herb extracts on the expression of 84 genes from the liver cancer pathway, and identified the top 20 herbs significantly reverting the gene expression of this pathway. Signal transducer and activator of transcription 3  (STAT3)  was identified as one of the key targets of the liver cancer pathway by PPI network analysis. Then, by analyzing compounds from top 20 herbs utilizing CADD, we found ginsenoside F2 (GF2) binds to STAT3 with high affinity, which was further validated by the results from molecular docking, SPR and NMR. Additionally, our results showed that GF2 suppresses the phosphorylation of Y705 of STAT3, inhibits its nuclear translocation, decreases its transcriptional activity and inhibits the growth of HCC in vitro and in vivo. CONCLUSION: Based on this large-scale transcriptional study, a number of anti-HCC herbs were identified. GF2, a compound derived from TCM, was found to be a chemical basis of these herbs in treating HCC. The present work also discovered that GF2 is a new STAT3 inhibitor, which is able to suppress HCC. As such, GF2 represents a new potential anti-HCC therapeutic strategy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/drug therapy , STAT3 Transcription Factor , Molecular Docking Simulation
14.
Anal Chem ; 95(37): 14052-14060, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37672636

ABSTRACT

One of the highly attractive research directions in the electrochemiluminescence (ECL) field is how to regulate and improve ECL efficiency. Quantum dots (QDs) are highly promising ECL materials due to their adjustable luminescence size and strong luminous efficiency. MoS2 NSs@QDs, an ECL emitter, is synthesized via hydrothermal methods, and its ECL mechanism is investigated using cyclic voltammetry and ECL-potential curves. Then, a stable and vertical attachment of a triplex DNA (tsDNA) probe to the MoS2 nanosheets (NSs) is applied to the electrode. Next, an innovative ECL sensor is courageously empoldered for precise and ultrasensitive detection of target miRNA-199a through the agency of ECL-resonance energy transfer (RET) strategy and a dextrous target-initiated catalytic three-arm DNA junction assembly (CTDJA) based on a toehold strand displacement reaction (TSDR) signal amplification approach. Impressively, the ingenious system not only precisely regulates the distance between energy donor-acceptor pairs leave energy less loss and more ECL-RET efficiency, but also simplifies the operational procedure and verifies the feasibility of this self-assembly process without human intervention. This study can expand MoS2 NSs@QDs utilization in ECL biosensing applications, and the proposed nucleic acid amplification strategy can become a miracle cure for ultrasensitive detecting diverse biomarkers, which helps researchers to better study the tumor mechanism, thereby unambiguously increasing cancer cure rates and reducing the risk of recurrence.


Subject(s)
DNA, Catalytic , MicroRNAs , Humans , Molybdenum , Catalysis , Electrodes
15.
Heliyon ; 9(9): e19322, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37674829

ABSTRACT

Osteoarthritis (OA) is a common joint disease characterized by chronic pain, and the perception of pain is closely associated with brain function and neuropeptide regulation. Rehmannia is common plant herb with anti-inflammatory and analgesic properties that is used to treat OA. However, it is unclear whether Rehmannia alleviates OA-related pain via regulation of neuropeptides and brain function. We examined the pain relief regulatory pathway in OA after treatment with Rehmannia by verifying the therapeutic effect of Rehmannia alcohol extract in vivo and vitro and exploring of the potential mechanism underlying the analgesic effect of Rahmanian using functional magnetic resonance imaging and measuring neuropeptide secretion. Our results showed that Rehmannia alcohol extract and the related active ingredient, Rehmannioside D, can delay cartilage degradation and alleviate inflammation in OA rats. The Rehmannia alcohol extract can also relieve OA pain, reduce the secretion of calcitonin gene-related peptide (CGRP) and substance P (SP), and reverse the pathological changes in the cerebral cortex and hippocampus. Our research results demonstrate that Rehmannia alleviates OA pain by protecting cartilage, preventing the stimulation of inflammatory factors on neuropeptide secretion, and influencing the relevant functional areas of the brain.

16.
Phytother Res ; 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37661763

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease. Senile plaques and intracellular neurofibrillary tangles are pathological hallmarks of AD. Recent studies have described the improved cognitive and neuroprotective functions of acteoside (AS). This study aimed to investigate whether the improved cognition of AS was mediated by Aß degradation and tau phosphorylation in APP/PS1 mice. The open field, Y maze, and novel object recognition tests were used to assess cognitive behavioral changes. We evaluated the levels of Aß40 and Aß42 in serum, cortex, and hippocampus, and Aß-related scavenging enzymes, phosphorylated GSK3ß and hyperphosphorylated tau in the cortex and hippocampus of APP/PS1 mice by western blotting. Our results revealed that AS treatment ameliorated anxious behaviors, spatial learning, and memory impairment in APP/PS1 mice and significantly reduced Aß deposition in their serum, cortex, and hippocampus. AS significantly increased Aß degradation, inhibited the hyperphosphorylation of tau, and significantly decreased the activity of GSK3ß, which is involved in tau phosphorylation. Altogether, these findings indicated that the beneficial effects of AS on AD-associated anxious behaviors and cognitive impairments could be attributed to promoting Aß degradation and inhibiting tau hyperphosphorylation, which might be partly mediated by GSK3ß.

17.
PLoS One ; 18(9): e0291121, 2023.
Article in English | MEDLINE | ID: mdl-37682825

ABSTRACT

The urban spatial structure in this study refers to the combination of different categories of land use, and the purpose of the study is to reveal the intrinsic correlation characteristics between urban land use structural combination forms and urban functions. Through the integration of land and population maps and other multi-source data, with the help of exploratory spatial data analysis and other models, this research deals with the land use spatial structure characteristics of Changchun city and its coordination relationship with urban functions. Main conclusions of the study are as follows. The overall density of the land use in the central urban area of Changchun shows patterns of the core being higher than the periphery, the large-scale agglomeration being significant and the small-scale relatively scattered, and the pattern of the mixed land use function index has obvious differentiation characteristics. The study shows that, in the context of the spatial pattern, the overall coupling coordination degree of the land use structure index and the urban function index shows a trend of a gradual decrease, from the core to the periphery. In the context of category differences, the coupling coordination of the land use structure with the population distribution and the Baidu thermal distribution is relatively high, and the coupling coordination with various service facilities is relatively low. Finally, in the context of scale differences, all types of coupling coordination degrees have significant sensitivity to the spatial scales. A large scale significantly reflects the overall decrease in the coupling coordination degrees from the core to the periphery, while a small scale shows the polycentric pattern characteristics of the urban spatial structure.


Subject(s)
Spatial Analysis , China
18.
Signal Transduct Target Ther ; 8(1): 347, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37704615

ABSTRACT

Coronavirus disease 2019 (COVID-19) was first reported three years ago, when a group of individuals were infected with the original SARS-CoV-2 strain, based on which vaccines were developed. Here, we develop six human monoclonal antibodies (mAbs) from two elite convalescents in Wuhan and show that these mAbs recognize diverse epitopes on the receptor binding domain (RBD) and can inhibit the infection of SARS-CoV-2 original strain and variants of concern (VOCs) to varying degrees, including Omicron strains XBB and XBB.1.5. Of these mAbs, the two most broadly and potently neutralizing mAbs (7B3 and 14B1) exhibit prophylactic activity against SARS-CoV-2 WT infection and therapeutic effects against SARS-CoV-2 Delta variant challenge in K18-hACE2 KI mice. Furthermore, post-exposure treatment with 7B3 protects mice from lethal Omicron variants infection. Cryo-EM analysis of the spike trimer complexed with 14B1 or 7B3 reveals that these two mAbs bind partially overlapped epitopes onto the RBD of the spike, and sterically disrupt the binding of human angiotensin-converting enzyme 2 (hACE2) to RBD. Our results suggest that mAbs with broadly neutralizing activity against different SARS-CoV-2 variants are present in COVID-19 convalescents infected by the ancestral SARS-CoV-2 strain, indicating that people can benefit from former infections or vaccines despite the extensive immune escape of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Mice , Broadly Neutralizing Antibodies , Antibodies, Monoclonal , Epitopes/genetics
19.
Pharmaceutics ; 15(9)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37765324

ABSTRACT

Conventional biomaterial is frequently used in the biomedical sector for various therapies, imaging, treatment, and theranostic functions. However, their properties are fixed to meet certain applications. Smart materials respond in a controllable and reversible way, modifying some of their properties because of external stimuli. However, protein-based smart materials allow modular protein domains with different functionalities and responsive behaviours to be easily combined. Wherein, these "smart" behaviours can be tuned by amino acid identity and sequence. This review aims to give an insight into the design of smart materials, mainly protein-based piezoelectric materials, shape-memory materials, and hydrogels, as well as highlight the current progress and challenges of protein-based smart materials in tissue engineering. These materials have demonstrated outstanding regeneration of neural, skin, cartilage, bone, and cardiac tissues with great stimuli-responsive properties, biocompatibility, biodegradability, and biofunctionality.

20.
Fish Physiol Biochem ; 49(5): 895-910, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37542703

ABSTRACT

The aim of this study was to investigate the splenic tissue damage of environmental biological drug avermectin to freshwater cultured carp and to evaluate the effect of silybin on the splenic tissue damage of carp induced by avermectin. A total of 60 carp were divided into 4 groups with 15 carp in each group, including the control group fed with basic diet, experimental group fed with basal diet and exposed to avermectin (avermectin group), experimental group fed with basal diet supplement silybin (silybin group), and experimental group fed with basal diet supplement silybin and exposed to avermectin (silybin + avermectin group). The whole test period lasted for 30 days, and spleen tissue was collected for analysis. In this study, H&E staining, mitochondrial purification and membrane potential detection, ATP detection, DHE staining, biochemical tests, qPCR, immunohistochemistry, and apoptosis staining were used to evaluate the biological processes of spleen tissue injury, mitochondrial function, oxidative stress, apoptosis, and endoplasmic reticulum stress. The results show that silybin protected carp splenic tissue damage caused by chronic avermectin exposure, decreased mitochondrial membrane potential, decreased ATP content, ROS accumulation, oxidative stress, apoptosis, and endoplasmic reticulum stress. Silybin may ameliorate the splenic tissue damage of cultured freshwater carp caused by environmental biopesticide avermectin by alleviating mitochondrial dysfunction and inhibiting PERK-ATF4-CHOP-driven mitochondrial apoptosis. Adding silybin into the diet becomes a feasible strategy to resist the pollution of avermectin and provides a theoretical basis for creating a good living environment for freshwater carp.


Subject(s)
Carps , Spleen , Animals , Silybin/pharmacology , Apoptosis , Signal Transduction , Adenosine Triphosphate
SELECTION OF CITATIONS
SEARCH DETAIL
...